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Abstract. We take another look at 1ML, a language in the ML tradi-
tion, but with core and modules merged into one unified language, ren-
dering all modules first-class values. 1ML already comes with a simple
form of effect system that distinguishes pure from impure computations.
Now we enrich it with effect polymorphism: by introducing effect decla-
rations and, more interestingly, abstract effect specifications, effects can
be parameterised over, and treated as abstract or concrete in the type
system, very much like types themselves. Because type generativity in
1ML is controlled by (im)purity effects, this yields a somewhat exotic
novel notion of generativity polymorphism – that is, a given functor can
be asked to behave as either “generative” or “applicative”. And this time,
we even get to define an interesting (poly)monad for that!

1 Introduction

In a recent paper [13] we introduced 1ML, a reboot of ML where modules are
first-class values. In this language, there no longer is any distinction between
core and modules, records or structures, functions or functors. Morally, every
expression denotes a module.

One peculiar feature of 1ML is its distinction between pure and impure func-
tions and computations, through a – very simple – form of effect system. Al-
though this is primarily motivated by the semantics of functors (as we will see
below), it obviously is an interesting distinction to make for “core-like” func-
tions as well. Effect systems [3, 9, 18] are regularly proposed as a complement to
functional type systems. They serve a similar role as monads [12, 20], which have
been successfully incorporated into languages like Haskell, but with a little extra
flexibility – Wadler & Thiemann showed that both are essentially equivalent [21].

Telling pure from impure statically allows much better control over side ef-
fects. Like any other form of type discipline, it allows more accurate specification
of interfaces, and prevents certain classes of errors. For example, a module can
specify that some of its interface functions are free of side effects. Or not. Higher-
order functions can shield against unwanted side effects when invoking an argu-
ment function (or “callback”, as laymen say nowadays). All useful capabilities,
and in principle it is possible to put them to good use in 1ML already.

What makes the use of effects cumbersome in 1ML, however, is the lack
of support for effect polymorphism. In a higher-order language that is a real



bummer, because the purity of a higher-order function will typically depend on
the purity of its argument. For example, consider

map f xs = if null xs then [] else f (head xs) :: map f (tail xs)

Is this a pure or impure function? It depends on f. We can imagine (at least)
two different signatures for map:

map : ∀ a b. (a → P b) → P list a → P list b
map : ∀ a b. (a → I b) → P list a → I list b

Here, we use “→P” to denote pure function types, and “→I” for impure ones.
Unfortunately however, map may only have one of these types in 1ML. If we
needed both, we would need to write different functions for the different sig-
natures. (Notably, 1ML’s pure arrows are subtypes of impure ones, but such
subtype polymorphism is insufficient to handle this case.)

Or we introduce the ability to abstract over (im)purity via polymorphism.
Both map and its argument could be polymorphic in their (joint) effect:

map : ∀ a b e. (a → e b) → P list a → e list b

In this signature, we assume that e is a (universally quantified) effect variable.
By instantiating it with either P or I, we can use the same implementation of
map on either a pure or an impure argument, and get a corresponding pure or
impure computation in return.

Okay, you might think, that looks like a fairly trivial and standard extension.
Others proposed this long ago [9]. Well, what makes it interesting in 1ML is that
the (im)purity effect is intimately tied to the notion of type generativity.

Functions that return abstract types – “functors” in ML speak – are interest-
ing beasts. There are two traditional schools of semantics: “generative” functors
(the SML way) and “applicative” functors (the OCaml way). In 1ML, both no-
tions coexist, and depend on whether a functor is pure or impure. Consider:

F : (a : type) → P type

A pure functor like this is “applicative” [8, 15], meaning that all applications to
equivalent types yield equivalent types:

type t = F bool
type u = F bool

defines types t and u to be equivalent. (Regardless, they are still abstract!)
An impure functor is “generative”, however:

G : (a : type) → I type

generates a fresh type with every application. So,

type v = G bool
type w = G bool



are different types! This is important in the face of impurity, since the types
produced by an impure computation may e.g. depend on state, and thus equating
them would be plain unsound. (More reasons why you all want both applicative
and generative functors are disclosed in Sections 7 and 8 of [15].)

Now, what would happen if we allowed such a functor to be polymorphic
over its effect? Say,

H : (a : type) → P (e : effect) → e type

Depending on the choice of e, it would be either applicative or generative: that
is, H bool P = H bool P, while H bool I is not reflexive (or even a well-formed
type expression).

In other words, introducing polymorphism over effects implies a notion of
generativity polymorphism. Is that actually a thing?

It is! In this paper, we show that this – rather esoteric – notion can actually
be defined. And we don’t even have to leave the familiar grounds of System Fω
for that. Well, except for one small extension. We also show that generativity
polymorphism is the essence of MacQueen & Tofte & Kuan’s (arguably equally
esoteric) notion of “true” higher-order functors [10, 7, 6].

2 The Language

Figure 1 presents the syntax of 1ML extended with explicit effects, separated
into core syntax and various syntactic sugar. For space reasons, we focus on
the explicitly typed fragment 1MLex [13] here (though complementing this with
effect inference in full 1ML is an easy addition). The effect-related constructs
that are new relative to the original formulation of 1MLex are highlighted in the
figure.

As in the original paper, the syntax is normalised to require named subterms
in most constructs. The general forms, as well as many other familiar module or
core-level constructs, can easily be defined as syntactic sugar. See [13] for enough
sugar to upset your stomach.

2.1 Basic use of effects

The extended language incorporates three main additions.

Effect annotations. First, function types acquire an explicit annotation F , that
specifies the effect that is released when calling the function. Because real pro-
gramming language syntax better works as plain text, we use the notation “F/T”
instead of making F a subscript on the arrow, as we did in the introduction.

There are two basic effect constants: pure and impure. To ease notation in
the common cases, we allow abbreviating pure function types with a plain arrow
“→”, and impure ones with a squiggly arrow “;”.1

1 I apologise for any confusion this may cause with the original 1ML paper, where
“→” is spelled “⇒” and “;” is spelled “→”. I chose to change the syntax for the
extended system because pure arrows are the more common case now, and I like
them to be represented by their natural operator.



(identifiers) X
(types) T ::= E | bool | {D} | (X:T )→F/T | type | effect | =E | T where (.X:T )
(effects) F ::= E | pure | impure | F ,F
(declarations) D ::= X :T | include T | D;D | ε
(expressions) E ::= X | true | false | if X then E else E:T | {B} | E.X |

fun (X:T )⇒E | XX | type T | effect F | X:>T
(bindings) B ::= X=E | include E | B;B | ε

Abbreviations:

(types)
(X:T1)→T2 := (X:T1)→ pure/T2

(X:T1);T2 := (X:T1)→ impure/T2

T1
→
;T2 := (X:T1)→;T2

where: (parameter) P ::= (X:T )

(declarations)

effect X P := X :P → effect
effect X P=F := X :P → (= effect F )

(bindings)

effect X P=F := X = funP ⇒ effect F

Fig. 1. Syntax of 1MLex with effect polymorphism (see [13] for more abbreviations)

For example, the type of the polymorphic identity function,

id = fun a ⇒ fun (x : a) ⇒ a

can be denoted as

id : (a : type) → pure/(x : a) → pure/a

or shorter, as just

id : (a : type) → (x : a) → a

Similarly, we can add impure operators to the language; for example, an
ML-style type ref T of mutable references with operators

new : (a : type) → (x : a) ; ref a
rd : (a : type) → (r : ref a) ; a
wr : (a : type) → (r : ref a) → a ; {}

Note how these types mix pure and impure arrows. A type parameter – express-
ing (explicit) polymorphism – is best considered a pure function: “instantiating”
a polymorphic type should not have any effect. Similarly, an impure function
with curried value parameters (like wr) releases its effect only when the last
argument is provided.

Effect values. Second, what makes the new syntax for function types interesting
instead of just verbose is that effects can now be “computed”: F can not just
refer to the two effect constants, it can also consist of an expression E. This has
to be a (pure) expression of the new type effect, a type that is inhabited by effect
“values”. Those values are formed by the corresponding expression effectF . Just
like types in 1ML, effects can thus be named or passed around as if they were
first-class values.

For example, we can write an effect-polymorphic apply combinator:



apply = fun (a : type) (b : type) (e : effect) (f : a → e/b) (x : a) ⇒ f x

The type of this function is:

apply : (a : type) → (b : type) → (e : effect) → (a → e/b) → a → e/b

To apply it, we have to provide the right effect argument:

t = apply bool bool pure id true
f = apply (ref bool) bool impure (rd bool) (new false)

Similarly, the map function from the introduction can be given the (explicitly)
polymorphic type

map : (a : type) → (b : type) → (e : effect) → (a → e/b) → list a → e/list b

Like any other value, effects can also be named by a binding:

effect e = pure
t = apply bool bool e id true

Analogous to type bindings in 1ML, this effect binding is just sugar for the value
binding “e = (effect pure)”. Admittedly, such bindings are a bit boring with just
effect constants, but they become more interesting with the following feature.

Effect composition. Finally, how are we going to type the following function?

compose = fun (a : type) (b : type) (c : type) (e1 : effect) (e2 : effect)
(f : b → e2/c) (g : a → e1/b) (x : a) ⇒ f (g x)

To give a type to that, we need the ability to compose effects. That is the role
of the effect operator “,”:

compose : (a : type) → (b : type) → (c : type) → (e1 : effect) → (e2 : effect) →
(b → e2/c) → (a → e1/b) → a → (e1,e2)/c

“F1,F2” denotes the least upper bound of effects F1 and F2 in a lattice where
pure is the bottom element and impure is top (the direction of this lattice is
consistent with the natural notion of subtyping on effects, where pure ≤ impure;
see Section 3). Consequently, an invocation of compose will be impure if at least
one of the effect parameters is instantiated with impure; only if both are pure
the result is pure as well. That should come as no surprise.

2.2 Generativity polymorphism

So far, we have only looked at effects of simple functions. If you are already
familiar with effect polymorphism, and much of the above looked boring, then
you can wake up now – we are now turning to modules and functors.



First-order generativity polymorphism. Let us start with the simplest possible
functor – essentially, the identity type constructor:

Id = fun (a : type) ⇒ a

The most specific type derivable for Id in 1ML is the fully transparent type

type ID TRANS = (a : type) → (= a)

where the singleton type (= a) indicates that the function returns the argument
a itself. This transparent signature is a subtype of two possible opaque signatures
that do not reveal the identity of their resulting type:

type ID PURE = (a : type) → type
type ID IMPURE = (a : type) ; type

We can seal Id with either of these signatures:

Id pure = Id :> ID PURE
Id impure = Id :> ID IMPURE

Both these functors now return an abstract type, but the first is “applicative”,
i.e., always returns the same type for equivalent arguments, while the second is
“generative”, i.e., always returns a fresh type, regardless of the argument.

But in our extended 1ML, there now is a third choice:

type ID POLY (e : effect) = (a : type) → e/type
Id poly (e : effect) = Id :> ID POLY e

We have just created our first “poly-generative” functor! This one can be applied
to our choice of effect: for example, Id poly pure bool = Id poly pure bool are
equivalent types, while Id poly impure bool is a generative (and thus impure)
expression that cannot be used as a type without binding it to a name. This is
exactly the functor H we wondered about in the introduction.

Higher-order generativity polymorphism. Okay, that was a contrived example.
Generativity polymorphism becomes more relevant in the higher-order case. Be-
cause we can now write the kind of functors that MacQueen always wanted to
write, under his slogan of “true higher-order functors” [10, 7, 6]. Recast in 1ML,
the problem he is concerned with, as formulated by Kuan & MacQueen [7], boils
down to the ability to define a generic Apply functor over types:

Apply (F : type → e/type) (a : type) = F a

Kuan & MacQueen want to be able to use such a functor transparently (i.e.,
such that type identities are fully propagated) in both of the following cases:

Id (a : type) = a
t = Apply Id bool
f (x : t) = (x : bool) ;; type-checks because t = bool

Const (a : type) = int
u = Apply Const bool
g (x : u) = (x : int) ;; type-checks because u = int



As it turns out, these examples already type-check in plain 1ML: both appli-
cations are well-typed, provided one picks e = pure in the parameter type of F
when defining Apply (which is equivalent to a plain 1ML pure function type). In
fact, even the application to an abstract functor works, as long as that is pure
as well:

Abs = Id :> type → type
v = Apply Abs bool
h (x : v) = (x : Abs bool) ;; type-checks because v = Abs bool

However, Kuan & MacQueen didn’t deal with a language of (only) applicative
functors (and neither do we), so the above isn’t quite a fair answer to their
challenge. What they really meant in particular is that Apply should also be
applicable to a generative functor, like here:

Gen (a : type) = a :> type
w = Apply Gen bool

That also works in plain 1ML, but only if the parameter F is typed as an im-
pure functor in the definition of Apply, equivalent to picking e = impure in our
extended language. That is, in plain 1ML, we can write Apply such that either
the former three examples type-check, or the last, but not all at the same time.

Effect polymorphism to the rescue! You already guessed it: in extended 1ML
we can escape that dilemma by making e into a parameter itself:

Apply (e : effect) (F : type → e/type) (a : type) = F a

Now all examples are expressible:

t = Apply pure Id bool
u = Apply pure Const bool
v = Apply pure Abs bool
w = Apply impure Gen bool

The extra argument is a bit more tedious to write than Kuan & MacQueen
would want, but it could easily be inferred (though we don’t discuss that here).

Existential effect polymorphism. Just for completeness, we mention that effects
can also – like types – be sealed, introducing the notion of an “abstract effect”:

M = {effect e = pure; f (g : int→ e/bool) = ...} :> {effect e; f : (int→ e/bool)→ ...}
let g (h : int → M.e/bool) = ... in g M.f

Honestly, this does not look like it would be a particularly useful feature, but it
falls out from 1ML’s design naturally and for free. Ruling it out would be more
complicated than allowing it. Maybe there even is some crazy use case that we
don’t foresee yet... Phantom effects, anyone?

3 Type System

Here’s how we build a type system for 1MLex with generativity polymorphism.
(Unfortunately, for the lack of space, we have to focus on the novelties, and refer
the interested reader to [13] for many basic details and rules omitted here.)



Semantic Types. Following the F-ing modules approach [15], 1ML’s type sys-
tem [13] is not defined in terms of its own syntactic types. Instead, it is defined
by translating those types into semantic types. (The short story behind that
approach is that syntactic module types are not expressive enough to accurately
account for all details of type abstraction and functorisation, especially the prob-
lem of local types, a.k.a. the avoidance problem. See [15] for the long story.)

(computation) Φ ::= Ξ | (Φ+ Φ)η

(abstracted) Ξ ::= ∃α.Σ
(large) Σ ::= π | bool | [= Ξ] | [= η] | {l:Σ} | ∀α.Σ →η Φ

(small) σ ::= π | bool | [= σ] | [= η] | {l:σ} | σ →η σ
(paths) π ::= α | π σ
(effects) η ::= P | I | ι | η ∨ η

Notation:
P ∨ η := η ∨ P := η
I ∨ η := η ∨ I := I

η(Σ) := P

η(∃αα.Σ) := I

Ξ ! := Ξ
(Φ1 + Φ2)P! := Φ1!

(Φ1 ⊕ Φ2)P := Φ1

(Φ1 ⊕ Φ2)I := Φ2

(Φ1 ⊕ Φ2)η := Φ1 if Φ1 = Φ2

(Φ1 ⊕ Φ2)η := (Φ1 + Φ2)η otherwise

Fig. 2. Semantic Types

Figure 2 shows the grammar of semantic types needed for 1MLex with effect
polymorphism (plus some auxiliary notation we’ll get to). They are written in
the style of System F types with explicit quantifiers (and as we will see later
they actually are System F types). Once more, additions to the original 1ML
system are highlighted. Type variables can be higher-order in these types, but
we assume they are kinded implicitly, and we use the notation κα if we need to
talk about the kind of α.

Let us recap the main intuitions behind those F-ing module types. The central
idea is introducing explicit quantifiers to remove all dependencies within a type.

Following Mitchell & Plotkin [11], signature types containing abstract types
(i.e., ADTs) are represented as existential types. For example, the signature

{type t; type u; type v = t → t; f : t → u}

where components v and f depend on t and u, corresponds to the semantic type

∃α1α2.{t : [= α1], u : [= α2], v : [= α1 → α1], f : α1 → α2}

where α1 and α2 are the local names for type components t and u, respectively,
and there are no dependencies inside the record. The notation [= τ ] denotes
the type of τ reified “as a value”, i.e., represents the type type (recall that a
component specification “type t” is just short for “t : type” in 1ML).

Functors, on the other hand, correspond to universal types. Any abstract
type from their domain signature becomes a universal type variable with scope
widened to include the codomain. For example, the functor type



(X : {type t; v : t}) → pure/{type u = X.t → X.t; x : X.t}

with dependencies from its codomain on the type X.t from the domain, maps to

∀α.{t : [= α], v : α} →P {u : [= α→ α], x : α}

More interesting are cases where an abstract type is bound in the codomain:

(X : {type t; v : t}) → e/{type u; f : X.t → u}

If e is impure, then this is a generative functor, which is modeled in the semantic
types by returning an existential package:

∀α.{t : [= α], v : α} →I ∃β.{u : [= β], f : α→ β}

If e is pure, however, then the functor is supposed to behave applicatively, i.e.,
return the same abstract type on each application. That is modeled by lifting
the existential out of the function:

∃β.∀α.{t : [= α], v : α} →P {u : [= β α], f : α→ β α}

In fact, it as an invariant of our semantic types that a pure arrow never has an
existential quantifier to the right – a pure functor cannot generate types. There
is one subtlety involved with the above type, though: in the implementation of
a functor matching this signature, the definition of u may depend on the param-
eter type t. Following Biswas [1] and Russo [16], all uses of β in the semantic
interpretation are hence skolemised over α accordingly. Consequently, β needs
to have higher kind κβ = Ω → Ω here (other variables had base kind Ω so far).

As we can see, the structure of the semantic type modeling the functor type
above is quite different depending on the choice of e. It differs in terms of where
the quantifier goes (inside vs. outside), its variable kind (Ω vs. Ω → Ω), and how
the abstract type u is denoted (β vs. β α). How can we reconcile these structural
differences to support a parametric choice of effect?

We can’t. Not really, anyway. We need something new.
The natural trick is to use sums: we generalise function types such that their

codomain is a “computation” type Φ that allows arbitrary many alternative
results. That is, if e is not statically known to be either pure or impure, then the
functor signature above will be represented as

∃β1.∀α.{t : [= α], v : α} →η

({u : [= β1 α], f : α→ β1 α}+ ∃β2.{u : [= β2], f : α→ β2})η

This encodes both possibilities: the left side of the sum is for the pure choice, the
right for the impure one. In this type, η is the representation of the effect e as
a semantic type. If η is not a constant P or I, then it either is an effect variable
ι, or the least upper bound of several of those, represented by the “∨” operator.
Since the two effect constants are the top and bottom elements of the effect
lattice, least upper bounds that contain those constants can always be simplified



Types Γ ` T  ΞΓ ` E :P Φ e Φ! = [= Ξ]

Γ ` E  Ξ
Tpath

κα = Ω

Γ ` type ∃α.[= α]
Ttype

Γ ` effect ∃ι.[= ι]
Teffect

Γ ` T1  ∃α1.Σ1

Γ, α1, X:Σ1 ` T2  ∃α2.Σ2 Γ ` F  η κα′
2

= κα1→ κα′
2

Γ ` (X:T1)→F/T2  ∃α′
2
η 6=I.∀α1. Σ1 →η ((∃α2.Σ2)⊕ (Σ2[α′

2 α1/α2]))η
Tfun

Γ ` E :P Φ e Φ! = Σ

Γ ` (=E) Σ
Tsing

Effects Γ ` F  ηΓ ` E :P Φ e Φ! = [= η]

Γ ` E  η
Fpath

Γ ` pure [= P]
Fpure

Γ ` impure [= I]
Fimpure

Γ ` F1  η1 Γ ` F2  η2
Γ ` F1,F2  η1 ∨ η2

Fjoin

Fig. 3. Elaboration of Types and Effects (new and modified rules)

to either ones that don’t, or directly to I. We assume that this simplification is
always performed implicitly, according to the notational rules given in Figure 2.

The effect η appears twice in the above type: once as an annotation on the
arrow, and once as an index on the sum, which is written (Φ1 + Φ2)η. The
former occurrence tracks the effect of the function, in a generalisation of what
we already had in plain 1ML. The latter tracks the choice of the sum: if, at some
point, the free effect variables of η get substituted such that the result normalises
to an effect constant, then the choice is statically determined – this basically is a
binary GADT. We say that a Φ with all effect indices being constants is unique.
As we will see below, this static extra knowledge is important for figuring out
when an expression of type type unambiguously denotes a type, such that it is
legal to project it.

It may be surprising that we need η twice. The reason is that, in general,
the computation type Φ in the codomain of an arrow can consist of many nested
sums, indexed by different effects – e.g., when a functor itself invokes several
other functors with variable effects. The effect on the arrow then only is an
upper bound of all these individual indices (and not necessarily the least); for
example, we could construct a functor of type Σ →η1∨η2 ((Ξ1 + Ξ2)η1 + Ξ3)η2 .
In a pure function, however, this upper bound is P, so all effect indices in Φ must
be pure as well, such that Φ is already guaranteed to be unique.



Types and Effects. The new and modified rules for translating syntactic types T
into semantic types Ξ are collected in Figure 3 (please see [13] for the others).
The individual modifications over plain 1ML are again highlighted.

The new rule Teffect for the type effect is analogous to the rule for type,
in that it introduces a fresh type variable to name the abstract effect. We use
ι to range over type variables that encode effects. We assume that these type
variables are a subcategory of general type variables α, such that they can be
uniformly written as α wherever we don’t care about the distinction.

The rule Tfun for function types effectively merges the previous rules Tfun
and Tpfun from 1ML, covering both impure and pure functors, but also effect-
polymorphic ones. It refers to the simple effect elaboration judgement also shown
in the figure. The auxiliary operator “⊕” (defined in Figure 2) avoids the sum
in those cases where the effect is statically known or does not change the type.
Likewise, we write “∃αι 6=I” to say that a quantifier is to be empty if η = I.

Another change is in rules Tpath and Tsing (and inherited by Fpath): the
notation Φ! (also defined in Figure 2) requires E’s type Φ to be unique – it selects
Φ’s unique summand and is undefined otherwise. It is here where we rely on the
effect index on sums: only sums whose indices are constant are unique, and can
be used for unambiguous projection of static information.

Expressions and Bindings. Figure 4 shows selected typing rules for expressions
E and bindings B, novelties once more highlighted. Before we go into details,
let us recap the main idea of typing modules using the F-ing modules approach.

As we saw before, the main trick in interpreting module types is introducing
quantifiers for abstract types. That is reflected in the typing of expressions: an
expression that defines new abstract types will have an “abstracted” type Ξ
with existential quantifiers, one quantifier for each new type.

When such an expression is nested into a larger expression then the rules
have to propagate these quantifiers accordingly. For example, for a projection
E.x to be well-typed, E obviously needs to have a type of the form {x : Σ, . . . };
the resulting type would be Σ then. However, if E creates abstract types locally,
then its type will be of the form ∃α.{x : Σ, . . . } instead. The central idea of F-ing
modules is to handle such types implicitly by extruding the existential quantifier
automatically: that is, the projection E.x is well-typed and assigned type ∃α.Σ,
with the same sequence of quantifiers. And so on for other constructs.

As we pointed out in [15], this handling of existential types is akin to a monad
– the monad of type generation! More precisely, it is a stack of nested monads,
one for each generated type. By extending 1ML with generativity polymorphism,
however, there no longer necessarily is a unique quantifier sequence for a given
expression. Expressions are now classified by “computation” types Φ, which are
sums over heterogeneous existentials. Our monad just became more interesting!

Fortunately, the sums we are dealing with are not arbitrary. Ultimately, they
all originate, directly or indirectly, from uses of the rule Tfun introducing effect-
polymorphic function types. And a quick look at this rule reveals that the inner
structure of the type is the same in both cases, up to the presence of quantifiers
and the internal naming of the abstract types introduced.



Expressions Γ ` E :η Φ  e

Γ ` T  Ξ

Γ ` type T :P [= Ξ] [Ξ]
Etype

Γ ` F  η

Γ ` effect F :P [= η] [η]
Eeffect

Γ ` E :η Mλα.{X ′:Σ′} e X:Σ ∈ X ′:Σ′

Γ ` E.X :η Mλα.Σ  doM α, y ← e in y.X
Edot

Γ ` T  ∃α.Σ Γ, α,X:Σ ` E :η Φ e

Γ ` fun (X:T )⇒E :P ∀α.Σ →η Φ λα.ληX:Σ.e
Efun

Γ ` X1 :P (∀α.Σ1 →η Φ) e1
Γ ` X2 :P Σ2  e2 Γ ` Σ2 ≤α Σ1  δ; f

Γ ` X1X2 :η δΦ (e1 (δα) (f e2)).val
Eapp

Bindings Γ ` B :η Φ  e

Γ ` E :η Mλα.Σ  e

Γ ` X=E :η Mλα.{X:Σ} doM α, x← e in {X=x}
Bvar

Γ ` B1 :η1 M1λα1.{X1:Σ1} e1 X
′
1 = X1 −X2

Γ, α1, X1:Σ1 ` B2 :η2 M2λα2.{X2:Σ2} e2 X ′
1:Σ′

1 ⊆ X1:Σ1

Γ ` B1;B2 :η1∨η2 M1M2λα1α2.{X ′
1:Σ′

1, X2:Σ2}
 joinM1M2

doM1 α1, y1 ← e1 in let X1 = y1.X1 in

doM2 α2, y2 ← e2 in {X ′
1 = y1.X ′

1, X2 = y2.X2}

Bseq

Fig. 4. Elaboration of Expressions (selected rules)

That allows to factor computation types Φ such that we separate their inner
structure from their quantification scheme. To that end, Figure 5 defines an
auxiliary syntactic class of monadic type constructors M . Any computation type
Φ can be expressed β-equivalently as an application of such an M to a suitable
type constructor defining the inner structure of the result. For example, the
effect-polymorphic functor type from earlier can be written equivalently as

∃β1.∀α.{t : [= α], v : α} →η (∃[β1 α] + ∃β2[β2])η (λβ.{u : [= β], f : α→ β})

That is, an application of (M1 +M2)η with M1 = ∃[β1 α] (which has an empty
existential quantifier) and M2 = ∃β2[β2] to the structural template λβ.{u : [=
β], f : α→ β}, with β being mapped to either β1 α or β2, accordingly.

The set of all monadic types M forms a polymonad [5] or productoid [19],
with ∃[] as its identity element. We can define the composition M1M2 as given
in Figure 5. We won’t go into details here, but leave proving the polymonad laws
as an exercise (see also Section 4).

It suffices to observe that we can use this notation to uniformly access the
structure of all alternatives of a computation type. Moreover, we can construct a
new computation type that lives in the same monadic envelope M . In particular,



(monadic type) M ::= ∃α[π] | (M +M)η

with:

∃α[π]κ := λc:(κ→ Ω).∃α.c π
(M1 +M2)ηκ := λc:(κ→ Ω).(M1c+M2c)

η

(M1M2)κ1κ2 :=


∃α1α2[π1π2] if M1 = ∃α1[π1] and M2 = ∃α2[π2]
(M1M21 +M1M22)η2 if M1 = ∃α1[π1] and M2 = (M21 +M22)η2

(M11M2 +M12M2)η1 if M1 = (M11 +M12)η1

doM α, x← e1 in e2 :=


unpack 〈α′, x〉 = e1 in pack 〈α′, e2〉 if M = ∃α′[π]

let f = λα.λx.e2 in case e1 of if M = (M1 +M2)η

inl x1.(doM1 α, x← x1 in inl e2 αx) |
inr x2.(doM2 α, x← x2 in inr e2 αx)

joinM1M2
e :=



case e of if M1 = (M11 +M12)η1

inl x.inl (joinM11M2
x) |

inr x.inr (joinM12M2
x)

unpack 〈α1, x〉 = e in case x of if M1 = ∃α1[π1]
inl y.inl (joinM1M21

pack 〈α1, y〉) | and M2 = (M21 +M22)η2

inr y.inr (joinM1M22
pack 〈α1, y〉)

e otherwise

Fig. 5. Polymonad notation for computation types

this happens in rules Edot and Bvar, which project and inject a value from/into
a structure, respectively. The notation is put to more interesting use in rule
Bseq, where two nested monadic computations in M1 and M2 are lifted to their
composition M1M2.

On the term level, the polymonad is witnessed by suitably defined do-notation
(which expresses a mapping over some M) and a join operator. The definition
of these operators, indexed by M , is given in Figure 5.

Subtyping. The existing rules for 1ML subtyping don’t change, but subtyping
now needs to be generalised to computation types Φ. Figure 6 shows how.

Basically, the six new rules inductively express that Φ1 ≤ Φ2 holds if each Ξ1

from Φ1 is a subtype of each Ξ2 from Φ2. Except that in the case of a constant
effect index, the excluded alternative can be ignored.

The most interesting case is rule Sr. It coerces a unique type Ξ ′ into a sum
indexed by an effect η. Since η may force later which alternative to pick, the
coercion has to perform a case distinction over η. To enable that, effects need
to be reified as terms in the elaboration. We refer to the Appendix for details.
There, we also explain the operators asl and asr used in the elaboration of rules
Slp and Sli, which are akin to a one-armed case over the binary “+” GADT.

Metatheory. For space reasons, we have banished all metatheory to the Ap-
pendix, where we define the encoding of semantic types into System Fω, and
state the obvious soundness results for the elaboration.



Subtyping Γ ` Φ′ ≤π Φ  δ; fΓ ` Φ′ ≤ Φ f := Γ ` Φ′ ≤ε Φ id; f

Γ ` Φ′
1 ≤π Φ δ; f1 Γ ` Φ′

2 ≤π Φ δ; f2
Γ ` (Φ′

1 + Φ′
2)η′ ≤π Φ δ;λx.case x of inl y.f1y | inr y.f2y

Sl

Γ ` Φ′
1 ≤π Φ δ; f

Γ ` (Φ′
1 + Φ′

2)P ≤π Φ δ;λx.f (asl x)
Slp

Γ ` Φ′
2 ≤π Φ δ; f

Γ ` (Φ′
1 + Φ′

2)I ≤π Φ δ;λx.f (asr x)
Sli

Γ ` Φ′ ≤π Φ1  δ; f1 Γ ` Φ′ ≤π Φ2  δ; f2
Γ ` Ξ ′ ≤π (Φ1 + Φ2)η  δ;λx.case η of inl y.inl (f1x) | inr y.inr (f2x)

Sr

Γ ` Φ′ ≤π Φ1  δ; f

Γ ` Ξ ′ ≤π (Φ1 + Φ2)P  δ;λx.inl (f x)
Srp

Γ ` Φ′ ≤π Φ2  δ; f

Γ ` Ξ ′ ≤π (Φ1 + Φ2)I  δ;λx.inr (f x)
Sri

η′ ≤ η
η ≤ I

Ftop
P ≤ ηFbot

ι′ ⊇ ι∨
ι′ ≤

∨
ι
Fjoin

Fig. 6. Elaboration of Subtyping (new rules)

4 Related Work

There has been a broad range of work on effect systems and effect polymorphism,
starting from Gifford & Lucassen’s original work [3, 9] and Talpin & Jouvelot’s
refinements [18]. But as noted in the introduction, the implications of effect
polymorphism that we have investigated in this paper is rather esoteric – to the
best of our knowledge, there is no other work on effect systems for modules, or
generativity polymorphism of the kind we introduced here.

“True” higher-order modules. The idea most closely related hence actually is
MacQueen’s notion of “true” higher-order modules, as originally introduced by
MacQueen & Tofte [10], implemented in SML of New Jersey, and later recast
by Kuan & MacQueen [7, 6]. In this semantics, every functor type is implicitly
“generativity polymorphic” as much as possible.

However, the formal details are rather involved, defining a specialised op-
erational calculus of type name creation, path trees, and explicit environment
manipulation (named the “entity calculus” in Kuan & MacQueen’s more recent
work). This semantics has so far escaped a more type-theoretic treatment, and
consequently, none of the other formalisations of higher-order modules on the
market [4, 8, 17, 2, 14, 15, 13] has followed its lead.

The system we presented is coming from a completely different angle. Yet,
as we show in Section 2, it has similar expressiveness, while maintaining most
of the relative simplicity of the 1ML semantics. One could argue that effect
polymorphism is what was hiding in MacQueen’s system all along, and that our
system makes that explicit and gives it a foundation in standard type theory.



Monads, Polymonads and Productoids. Moggi [12] suggested monads as a means
for semantic modeling of effectful computations. Wadler [20] recognised their
broader value for language design, as an immensely viable user-facing feature,
which became a cornerstone of Haskell.

Our paper on F-ing modules [15] already pointed out that existentials behave
“like a monad” in our semantics, encapsulating the underlying “effect” of type
generation. However, we never formally investigated the connection. A slightly
more careful look reveals that it’s not really a single monad, but a whole stack
of them: one for each abstract type generated.

In the current paper, this interpretation as nested monads is no longer suf-
ficient. Computation types are sums of existentials. In order to maintain this
invariant under composition, composition can no longer be just nesting. Conse-
quently, they give rise to a more general, more heterogeneous structure.

Hicks et al. [5] have recently investigated a generalisation of this kind of struc-
ture under the name polymonad. One way to describe it is as a set of monadic
type constructors with heterogeneous bind (or join) operators. Independently,
Tate [19] introduced a similar, slightly more general notion he calls productoids.
In both cases, these formal structures were motivated by the desire to model
certain forms of effects (though both works only investigate classical term-level
effects).

Our computation types Φ, when factored into monadic constructors M , are
an instance of this general structure. However, they are higher-kinded: they take
a(nother) type constructor as argument, to allow transmitting the choice of type
names to the “value” type. We leave a closer investigation of their exact relation
to polymonads and productoids, and their formal properties, to future work.

5 Future Work

The current paper is primarily a sketch of a basic system. As always, there are
many future roads to go. To mention only a few:

Implementation. We would like to integrate effect polymorphism into our 1ML
prototype interpreter (mpi-sws.org/˜rossberg/1ml/), to gather some practical ex-
perience from more experiments with the system.

Effect Inference. In the current paper we have only investigated the explicitly-
typed fragment of 1ML. We believe that it is straightforward to incorporate
implicit functions over effects to full 1ML, and enable the inference of effect
parameters and arguments, just like for types.

More Effects. Our little language provides “impurity” (or partiality, if you prefer)
as the only effect. That is as coarse as it can get. While already useful, it would
be interesting to refine it to distinguish different concrete effects.

Abstract Effects. We have not yet explored what kind of abstractions might be
enabled by the notion of abstract effect that our system introduces. Is it useful?
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A Elaboration

A.1 Internal Language

As in the the F-ing modules semantics [15] and the original 1ML paper [13], we
define the semantics of the extended language by elaborating 1MLex types and
terms into types and terms of a (call-by-value, impredicative) variant of System
Fω with simple record types – see the syntax in Figure 7.

However, this time we need a small extension over plain Fω: to track gen-
erativity effects and the different forms of quantification they can cause in an
indexed sum, we require a simple notion of GADT. We add this to Fω in the
simplest possible form: an indexed binary sum (τ1 + τ2)τ . Operationally, it is



(kinds) κ ::= Ω | κ→ κ

(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ | > | ⊥ | (τ + τ)τ | λα:κ.τ | τ τ
(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ |

pack 〈τ, e〉τ | unpack 〈α, x〉=e in e |
inlτ e | inrτ e | asl e | asr e | case e of inl x.e | inr x.e

Γ ` > : Ω Γ ` ⊥ : Ω

Γ ` τ1 : Ω Γ ` τ1 : Ω Γ ` τ : Ω

Γ ` (τ1 + τ2)τ : Ω

Γ ` e : τ1 Γ ` τ2 : Ω

Γ ` inlτ2 e : (τ1 + τ2)>
Γ ` e : τ2 Γ ` τ1 : Ω

Γ ` inrτ1 e : (τ1 + τ2)⊥

Γ ` e : (τ1 + τ2)>

Γ ` asl e : τ1

Γ ` e : (τ1 + τ2)⊥

Γ ` asr e : τ2

Γ ` e : (τ1 + τ2)τ
′

Γ, x1:τ1 ` e1 : τ Γ, x2:τ2 ` e2 : τ

Γ ` case e of inl x1.e1 | inr x2.e2 : τ

Fig. 7. Syntax and non-standard typing rules of Fω with binary GADTs

equivalent to an ordinary sum, with injections inl e and inr e and a case con-
struct for elimination. However, the index τ allows deducing the choice statically:
if it is equivalent to the type >, then the value is known to be a left injection;
analogously, ⊥ implies a right injection. Accordingly, there are two additional
elimination constructs, asl e and asr e, that are only valid on operands with
known index, and perform the respective projection (they correspond to a one-
armed case in more general forms of GADTs).

Figure 7 shows the syntax for this IL. The non-standard extensions just de-
scribed are highlighted. The figure also includes the typing and kinding rules for
those additional constructs. We omit reduction rules, because they are straight-
forward. The semantics is otherwise completely standard, and reuses the formu-
lation from [15].

We write Γ ` e : τ for the Fω typing judgement, and let e ↪→ e′ denote (one-
step) reduction. As one would hope, the language enjoys the standard soundness
properties:

Theorem 1 (Preservation).
If · ` e : τ and e ↪→ e′, then · ` e′ : τ .

Theorem 2 (Progress).
If · ` e : τ and e is not a value, then e ↪→ e′ for some e′.

To establish soundness of 1ML it suffices to ensure that elaboration always pro-
duces well-typed Fω terms (Section A.3).

A.2 Encoding Semantic Types

Elaboration translates 1MLex types directly into “equivalent” System Fω types.
The shape of these semantic types was given by the grammar in Figure 2.



(kinds)
Eff := Ω → Ω → Ω
Monκ := (κ→ Ω)→ Ω

(types)
[= τ ] := {typ : τ → {}}
[= η] := {typ : η → {}}
τ1 →η τ2 := τ1 → {val : τ2, eff : [= η]}
(Φ1 + Φ2)η := (Φ1 + Φ2)(η>⊥)

∀ι.τ := ∀αι.effαι → τ
∃ι.τ := ∃αι.{eff : effαι, val : τ}

eff := λα:Eff.({}+ {})(α>⊥)

I := λα1α2.α1

P := λα1α2.α2

ι := αι
η1 ∨ η2 := λα1α2.η1 α1 (η2 α1 α2)

(environments)
Γ, ι := Γ, αι, xι: effαι

(terms)
[τ ] := {typ = λx:τ.{}}
[η] := {eff = λx:(η>⊥).{}, val = η}
ληx:τ.e := λx:τ.{val = e, eff = [η]}

λι.e := λαι.λxι:(effαι).e
pack 〈η, e〉 := pack 〈η, {eff = η, val = e}〉

I := inl {}
P := inr {}
ι := xι
η1 ∨ η2 := case η1 of inl x.I | inr x.

case η2 of inl x.I | inr x.P

Fig. 8. Encoding of Semantic Types in Fω

Not all the forms in that grammar are unadorned Fω types, however. Some
are auxiliary forms that are definable as syntactic sugar. Figure 8 shows how
they can be encoded, along with respective term-level constructs for defining
the evidence terms of the elaboration.

Several tricks in the elaboration are new relative to plain 1ML:

– Computation types are represented using the indexed binary sums intro-
duced in the previous section. Their index is (the desugaring of) an effect
type applied to > and ⊥.

– To this end, effect types are represented as type constructors representing a
simple Church-style encoding of Booleans. The kind of effect types hence is
Eff = Ω → Ω → Ω, and their application behaves like a conditional.

– Effects also need to be reified on the term level, however, in order to enable
reflection as needed in rule Sr. We use a binary sum (over units) for that
purpose that is indexed by the corresponding type-level effect encoding –
terms of type eff η are term-level encodings of effect type η.

– Since effects η can contain effect variables ι, this in turn requires those to be
represented on both the type and term level. We use the trick of “twinning”
each effect variable ι in the environment Γ as both a type variable αι and a
term variable xι, assuming appropriate namespace injections. Likewise, every
abstraction and quantification over effect variables consistently happens on
both levels.

These encodings make sense, because the following consistency properties hold
(note how we overload effects η as notation for both types and terms):



Proposition 1 (Derivable Rules for Effect Encodings).
Let Γ be a well-formed System Fω environment.

1. Γ ` I : Eff.
2. Γ ` P : Eff.
3. If ι ∈ Γ , then Γ ` αι : Eff.
4. If Γ ` η1 : Eff and Γ ` η2 : Eff, then Γ ` η1 ∨ η2 : Eff
5. Γ ` I : eff I.
6. Γ ` P : eff P.
7. If ι ∈ Γ , then Γ ` xι : eff αι.
8. If Γ ` η1 : eff η1 and Γ ` η2 : eff η2, then Γ ` η1 ∨ η2 : eff (η1 ∨ η2).

Here, we write “ι ∈ Γ as a shorthand for “Γ (αι) = Eff ∧ Γ (xι) = eff αι”, in
correspondence to the twinning for effect variables explained above.

With the notation Monκ to denote the kind of a monadic computation con-
structor mentioning abstract types of kinds κ, similar consistency properties can
be shown for the polymonad notation from Figure 5:

Proposition 2 (Derivable Rules for Polymonads).
Let Γ be a well-formed System Fω environment.

1. If Γ, α ` π : κ, then Γ ` ∃α[π] : Monκ.
2. If Γ `M1 : Monκ and Γ `M2 : Monκ and Γ ` η : Eff,

then Γ ` (M1 +M2)η : Monκ.
3. If Γ `M1 : Monκ1

and Γ `M2 : Monκ2
, then Γ `M1M2 : Monκ1κ2

.
4. If Γ `M : Monκα and Γ ` e1 : Mλα.τ1 and Γ, α, x:τ1 ` e2 : τ2,

then Γ ` (doM α, x← e1 in e2) : Mλα.τ2.
5. If Γ `M1 : Monκ1

and Γ `M2 : Monκ2
and Γ ` e : M1λα1.M2λα2.τ ,

then Γ ` joinM1M2
e : M1M2λα1α2.τ .

Note that our use of do-notation is a slight abuse (if you’re coming from Haskell,
anyway): it actually is a map, not a monadic bind – both are instances of poly-
monadic binds, however.

A.3 Meta-Theory

With the previous propositions we can verify that elaboration is correct:

Proposition 3 (Correctness of Elaboration).
Let Γ be a well-formed Fω environment.

1. If Γ ` T/D  Ξ, then Γ ` Ξ : Ω.
2. If Γ ` F  η, then Γ ` η : Eff.
3. If Γ ` E/B :η Φ e, then Γ ` e : Φ and Γ ` η : Eff.

Furthermore, if η = P then Φ ! = Σ.
4. If Γ ` Φ′ ≤αα′ Φ δ; f and Γ ` Φ′ : Ω and Γ, α ` Φ : Ω, then dom(δ) = α

and Γ ` δ : Γ, α and Γ ` f : Φ′ → δΦ.

Together with the standard soundness result for Fω we can tell that the extension
of 1MLex is still sound:

Theorem 3 (Soundness of 1MLex with Effect Polymorphism).
If · ` E : Φ e, then either e ↑ or e ↪→∗ v such that · ` v : Φ and v is a value.


